ENGINEERING MATHEMATICS IV

(PROBABILITY THEORY AND RANDOM PROCESSES)

Course Code	19EC1402	Year	II	Semester	II
Course	Basic	Branch	ECE	Course Type	Theory
Category	Sciences				
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering Mathematics-I (19EMA101) Engineering Mathematics-II (19EMA102)
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Apply the knowledge of probability to solve engineering problems					
CO2	Distinguish various types of noise by using the probability distribution and density functions					
CO3	Evaluate the characteristics of single and multiple random variables					
CO4	Analyze the temporal characteristics of random processes					
CO5	Evaluate the spectral characteristics of noise in communications					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

Strength of correlations (5-mgn, 2. Wethum, 1.Low)														
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	1							2	2	
CO2	3	2	1	2	1							2	2	
CO3	3	3	1	2	1							2	2	
CO4	3	3	1	2	1							2	2	
CO5	3	3	1	2	1							2	2	

Syllabus					
Unit No.	Contents	Mapped COs			
Ι	Probability: Probability introduced through sets and relative frequency, joint and conditional probability, independent events, combined experiments, Bernoulli trials.	CO1			
Π	Random Variable: Introduction, random variable concept, distribution function, density function, the Gaussian random variable, other distribution and density examples, conditional distribution and density functions. Operation on One Random Variable: Introduction, expectation, moments, functions that give moments, transformations of a random variable.	CO2& CO3			

III	Multiple Random Variables Vector random variables, joint distribution and density functions, properties, conditional distribution and density, statistical independence, distribution and density of a sum of random variables, central limit theorem. Expected Value of a Function of Random Variables: Joint moments about the origin, joint central moments, jointly Gaussian random variables - two random variables case, N random variable case.	CO3
IV	Random Process-I: Temporal characteristics - the random process concept, stationary and statistical independence, correlation functions, Gaussian random processes, Poisson random process.	CO4
V	Random Process-II: Spectral characteristics, the power spectrum: Properties, relationship between power spectrum and autocorrelation function, the cross-power density spectrum: Properties, relationship between crosspower spectrum and cross-correlation function	CO5

Learning Resources

Text Books

1. Peyton Z. Peebles, Probability, Random Variables and Random Signal Principles, 4/e, Tata McGraw Hill, 2002.

2. Athanasios Papoulis, S. UnnikrishnaPillai, Probability, Random Variables and Stochastic Processes, 4/e, Tata McGraw Hill, 2002.

Reference Books

1. Simon Haykin, Communication Systems, 4/e, Wiley Student Edition, 2006.

2. Henry Stark, John W. Woods, Probability and Random Processes with Application to Signal Processing, 3/e, Pearson Education, 2002.

e- Resources & other digital material

1. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/TOC-M1.htm

2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and %20System/Course%20Objective.htm

3. http://www.stanford.edu/~boyd.ee102

4. http://www.ece.gatech.edu/users/bonnie/book

5. <u>http://ocw.mit.edu</u>